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Robust advances in interactome analysis demand comprehensive, non-redundant and consistently annotated data sets.

By non-redundant, we mean that the accounting of evidence for every interaction should be faithful: each independent

experimental support is counted exactly once, no more, no less. While many interactions are shared among public repo-

sitories, none of them contains the complete known interactome for any model organism. In addition, the annotations of

the same experimental result by different repositories often disagree. This brings up the issue of which annotation to keep

while consolidating evidences that are the same. The iRefIndex database, including interactions from most popular repo-

sitories with a standardized protein nomenclature, represents a significant advance in all aspects, especially in comprehen-

siveness. However, iRefIndex aims to maintain all information/annotation from original sources and requires users to

perform additional processing to fully achieve the aforementioned goals. Another issue has to do with protein complexes.

Some databases represent experimentally observed complexes as interactions with more than two participants, while

others expand them into binary interactions using spoke or matrix model. To avoid untested interaction information

buildup, it is preferable to replace the expanded protein complexes, either from spoke or matrix models, with a flat list

of complex members.

To address these issues and to achieve our goals, we have developed ppiTrim, a script that processes iRefIndex to produce

non-redundant, consistently annotated data sets of physical interactions. Our script proceeds in three stages: mapping all

interactants to gene identifiers and removing all undesired raw interactions, deflating potentially expanded complexes,

and reconciling for each interaction the annotation labels among different source databases. As an illustration, we have

processed the three largest organismal data sets: yeast, human and fruitfly. While ppiTrim can resolve most apparent

conflicts between different labelings, we also discovered some unresolvable disagreements mostly resulting from different

annotation policies among repositories.

Database URL: http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/ppiTrim.html
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Introduction

The current decade has witnessed a significant amount of

effort toward discovering the networks of protein–protein

interactions (interactomes) in a number of model organ-

isms. These efforts resulted in hundreds of thousands of

individual interactions between pairs of proteins being re-

ported (1). Repositories such as the BioGRID (2), IntAct (3),

MINT (4), DIP (5), BIND (6, 7) and HPRD (8) have been

established to store and distribute sets of interactions

collected from high-throughput scans as well as from cur-

ation of individual publications. Depending on its goals,

each interaction database, maintained by a different

team of curators located around the world includes and

annotates interactions differently. Consequently, while

many interactions of specific interactomes are shared

among databases (1, 9), no one contains the complete

known interactome for any model organism. Constructing

a full-coverage protein–protein interaction network
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therefore requires retrieving and combining entries from

many databases.

This task is facilitated by several initiatives developed by

the proteomics community over the years. The IMEx con-

sortium (10) was formed to facilitate interchange of infor-

mation between different primary databases by using a

standardized format. The Proteomics Standards Initiative

Molecular Interaction (PSI-MI) format (11) allows a standard

way to represent protein interaction information. One of

its salient features is the controlled vocabulary of terms

that can be used to describe various facets of a protein–

protein interaction including source database, interaction

detection method, cellular and experimental roles of inter-

acting proteins and others. The PSI-MI vocabulary is orga-

nized as an ontology, a directed acyclic graph (DAG), where

nodes correspond to terms and links to relations between

terms. This enables the terms to be related in an efficient

and algorithm-friendly manner.

Consistently annotated data sets are useful for develop-

ment and assessment of interaction prediction tools

(12–15). Furthermore, such data sets also form the basis

of interaction networks, for which numerous analysis

tools have been developed (16, 17). Depending on bio-

logical aims of a tool, different entities (nodes) and poten-

tially weighted interactions (edges) may be preferred. The

chance of conflicting predictions from different tools

can be reduced by starting from a consistently annotated

data set that faithfully represents all available evidences.

Such data set ought to be comprehensive but also

non-redundant: the same experimental evidence for

an interaction should appear once and only once. To main-

tain a coherent development of biological understanding,

it is indispensable to keep the reference data sets

up-to-date.

We examined several primary interaction databases with

the aim of constructing non-redundant (in terms of evi-

dence), consistently annotated and up-to-date reference

data sets of physical interactions for several model organ-

isms. Unfortunately, the common standard format used by

most primary databases still does not allow direct compil-

ation of full non-redundant interactomes. This mainly re-

sults from the fact that different primary databases may

use different identifiers for interacting proteins and differ-

ent conventions for representing and annotating each

interaction. Combining interaction data from BIND (6, 7)

(in two versions called ‘BIND’ and ‘BIND_Translation’),

BioGRID (2), CORUM (18), DIP (5), HPRD (8), IntAct (3),

MINT (4), MPact (19), MPPI (20) and OPHID (21), the

iRefIndex (22) database represents a significant advance

toward a complete and consistent set of all publicly avail-

able protein interactions. Apart from being comprehensive

and relatively up-to-date, the main contribution of

iRefIndex is in addressing the problem of protein identifiers

by mapping the sequence of every interactant into a

unique identifier that can be used to compare interactants

from different source databases. In a further ‘canonicaliza-

tion’ procedure (23), different isoforms of the same protein

are mapped to the same canonical identifier. By adhering

to the PSI-MI vocabulary and file format, iRefIndex provides

largely standardized annotations for interactants and inter-

actions. Construction of iRefIndex led to the development

of iRefWeb, a web interface for interactive access to

iRefIndex data (23). iRefWeb allows an easy visualization

of evidence for interactions associated with user-selected

proteins or publications. Recently, the authors of

iRefIndex and iRefWeb published a detailed analysis of

agreement between curated interactions within iRefIndex

that are shared between major databases (24).

However, aiming to maintain all information from ori-

ginal sources, iRefIndex requires users to perform add-

itional processing to fully achieve the aforementioned

goals. In particular, iRefIndex considers redundancy in

terms of (unordered) pairs of interactants rather than in

terms of experimental evidence associated with an inter-

action. Consequently, there will be features one desires to

have that may not fit well within the scope of iRefIndex.

For example, one may wish to treat interactions arising

from enzymatic reactions as directed and to be able to se-

lectively include/exclude certain types of reactions such as

acetylation. In many cases, the information about post-

translational modifications is available directly from

source databases, but is not integrated into iRefIndex.

Another issue that propagates into iRefIndex from source

databases has to do with protein complexes. Some data-

bases represent experimentally observed complexes as

interactions with more than two participants, while

others expand them into binary interactions using spoke

or matrix model (1). Turinsky et al. (24) recently observed

that this different representation of complexes is respon-

sible for a significant number of disagreements between

major databases curating the same publication. From our

earlier work (25), we found that such expanded complexes

may lead to nodes with very high degree and often intro-

duce undesirable shortcuts in networks. To fairly treat the

information provided by protein complexes without exag-

geration, it is preferable to replace the expanded inter-

actions, either from spoke or matrix models, with a flat

list of complex members. Additionally, we discovered that

the mapping of each protein to a canonical group by

iRefIndex would sometimes place protein sequences clearly

originating from the same gene (for example, differing in

one or two amino acids) into different canonical groups.

To achieve the goal of constructing non-redundant, con-

sistently annotated and up-to-date reference data sets, we

developed a script, called ppiTrim, that processes iRefIndex

and produces a consolidated data set of physical protein–

protein interactions within a single organism.
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Materials and methods

Our script, called ppiTrim, is written in the Python program-

ming language. It takes as input a data set in iRefIndex

PSI-MI TAB 2.6 format, with 54 TAB-delimited columns

(36 standard and 18 added by iRefIndex). After three

major processing steps, it outputs a consolidated data set,

in PSI-MI TAB 2.6 format, containing only the 36 standard

columns (Supplementary Table 1). The three processing

steps are: (i) mapping all interactants to NCBI Gene IDs

and removing all undesired raw interactions; (ii) deflating

potentially expanded complexes; and (iii) collecting all raw

interactions, originated from a single publication, that have

the same interactants and compatible experimental detec-

tion method annotations into one consolidated interaction.

At each step, ppiTrim downloads the files it requires from

the public repositories and writes its intermediate results as

temporary files.

Phase I: initial filtering and mapping interactants

In Phase I, ppiTrim takes the original iRefIndex data set and

classifies each raw interaction (either a binary interaction

corresponding to a single line in the input file or a complex

supported by several lines) into one of four distinct cate-

gories: removed (not examined further), biochemical reac-

tion, complex or potentially part of a complex, and other

(direct binary binding interaction). It removes interactions

marked as genetic, originating from publications specified

through a command line parameter or having interactants

from organisms other than the main species of the input

data set (the allowed species can be explicitly provided

or any interaction with interactants having different

Taxonomy IDs is removed). Additionally, ppiTrim removes

all interactions from OPHID and the ‘original’ BIND. The

former is removed because it contains either computation-

ally predicted interactions or interactions verified from the

literature using text mining (i.e. without human curation).

The latter is removed because it processes the same original

data set as BIND_Translation (7).

As a first step, the script seeks to map each interactant to

an NCBI Entrez Gene (26) identifier. For most interactants, it

uses the mapping already provided by iRefIndex. In the

cases where iRefIndex provides only a Uniprot (27) know-

ledge base accession, the script attempts to obtain a Gene

ID in three different ways. First, it searches the iRefIndex

mappings.txt file (found compressed in ftp.no.embnet

.org/irefindex/data/current/Mappingfiles/ for

any additional mappings. This part is optional because the

mappings.txt file is very large even compressed and it

would not be feasible to perform automatic download

each time ppiTrim is run. Secondly, for all unmapped

Uniprot IDs, it retrieves the corresponding full Uniprot re-

cords using the dbfetch tool from EBI (www.ebi.ac.uk/

Tools/dbfetch). If a direct mapping to Gene ID is present

within the record as a part of DR field, it is used. Otherwise,

the canonical gene name (field GN) is used to query the

NCBI Entrez Gene database for a matching Gene record

using an Eutils interface. If a single unambiguous match is

found, the record’s Gene ID is used for the interactant. No

mapping is performed if multiple matches are obtained.

Every mapped Gene ID is checked against the list of obso-

lete Gene IDs, which are no longer considered to have a

protein product existing in vivo. The interactants that

cannot be mapped to valid (non-obsolete) Gene IDs are

removed along with all raw interactions they participate in.

After assigning Gene IDs, the script considers the PSI-MI

ontology terms associated with interaction detection

method, interaction type and interactants’ biological

roles. Using the full PSI-MI ontology file in Open

Biomedical Ontology (OBO) format (28), it replaces any

non-standard terms in these fields (labeled MI:0000) with

the corresponding valid PSI-MI ontology terms. The terms

marked as obsolete in the PSI-MI OBO file are exchanged

for their recommended replacements (Supplementary

Table 2). The single exception are the interaction detection

method terms for HPRD ‘in vitro’ (MI:0492, translated from

MI:0045 label in iRefIndex) and ‘in vivo’ (MI:0493) inter-

actions, which are kept throughout the entire processing.

Source interactions annotated with a descendant of the

term MI:0415 (enzymatic study) as their detection method

or with a descendant of the term MI:0414 (enzymatic reac-

tion) as their interaction type are classified as candidate

biochemical reactions. This category also includes any inter-

actions (including those with more than two interactants)

where one of interactants has a biological role of MI:0501

(enzyme) or MI:0502 (enzyme target). In the recent months,

the BioGRID database has started to provide additional in-

formation about the post-translational modifications asso-

ciated with the ‘biochemical activity’ interactions, such as

phosphorylation, ubiquitination, etc. This information is

available from the BioGRID data sets in the new TAB2

format but is not yet reflected in the PSI-MI terms for inter-

action type provided in the PSI-MI 2.5 format or in

iRefIndex. Since the post-translational modifications anno-

tated by the BioGRID can be directly matched to standard

PSI-MI terms (Supplementary Table 3), the script downloads

the most recent BioGRID data set in TAB2 format, extracts

this information and assigns appropriate PSI-MI terms for

interaction type to the candidate biochemical reactions

from iRefIndex that originate from the BioGRID.

Any source interaction not classified as candidate bio-

chemical reaction is considered for assignment to the can-

didate complex categories. This category includes all true

complexes (having edge type ‘C’ in iRefIndex), interactions

having a descendant of MI:0004 (affinity chromatography)

as the detection method term or MI:0403 (colocalization) as

the interaction type, as well as the interactions correspond-

ing to the BioGRID’s ‘Co-purification’ category. Interactions
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with interaction type MI:0407 (direct interaction) are never

considered candidates for complexes. All source inter-

actions not falling into candidate biochemical reaction or

candidate complex categories are considered ordinary

binary physical interactions.

Phase II: deflating spoke-expanded complexes

The Phase II script attempts to detect spoke-expanded com-

plexes from ‘candidate complex’ interactions and deflate

them into interactions with multiple interactants. First, all

candidate interactions are grouped according to their pub-

lication (Pubmed ID), source database, detection method

and interaction type. Each group of source interactions is

turned into a graph and considered separately for consoli-

dation into one or more complexes. When a portion of a

group of interactions is deflated, we replace these source

interactions by a complex containing all their participants.

Each collapsed complex is represented using bipartite rep-

resentation in the output MITAB file (the same as the ori-

ginal complexes from iRefIndex, but using newly generated

complex IDs) and the references to the original source inter-

actions are preserved (Supplementary Table 1). Two pro-

cedures are used for consolidation: pattern detection and

template matching (Figure. 1). The deflation algorithm for

each new complex is indicated in the output file through its

edge type (Table 1).

Pattern detection procedure is used only for the inter-

actions from the BioGRID. Unlike the interactions from the

DIP, those interactions are inherently directed since one

protein is always labeled as bait and other as prey (in

many cases this labeling is unrelated to the actual experi-

mental roles of the proteins). The pattern indicating a pos-

sible spoke-expanded complex consists of a single bait

being linked to many preys. Since all interactions in the

BioGRID’s ’Co-purification’ and ’Co-fractionation’ cate-

gories arise from complexes that are spoke-expanded

using an arbitrary protein as a bait (BioGRID

Administration Team, private communication), a bait

linked to two or more preys can in that case always be

considered an expanded complex and deflated. Such

deflated complexes are assigned the edge type code ‘G’.

The remainder of the complex candidate interactions

from the BioGRID were obtained by affinity chromatog-

raphy and are, in most cases, also derived from complexes.

Here we adopted a heuristic that a bait linked to at least

three preys can be considered a complex. Clearly, some ex-

periments involve a single bait being used with many inde-

pendent preys, in which case this procedure would

generate a false complex. Therefore, complexes generated

in this way are assigned a different edge type code (‘A’) and

the user is able to specify specific publications to be

excluded from consideration as well as the maximal size

of the complex.

The second procedure is based on matching each group

of candidate interactions to the complexes indicated by

other databases (templates), mostly from IntAct, MINT,

DIP and BIND. In this case, the script checks for each protein

in the group whether it, together with all its neighbors, is a

superset of a template complex. If so, all the candidate

interactions between the proteins within the complex are

deflated. The neighborhood graph is undirected for all

source databases except the BioGRID. The new complexes

generated in this way are given the code ‘R’. The script also

attempts to use complexes generated from the BioGRID’s

interactions through a pattern-detection procedure as tem-

plates, in which case the newly generated complexes have

the code ‘N’. Any source interactions that cannot be

deflated into complexes are retained for Phase III.

Phase III: normalizing interaction-type annotation

Overview. The goal of the final phase of ppiTrim is to

consolidate all evidence for an interaction, obtained from

Figure 1. ppiTrim uses two procedures for complex deflation:
pattern detection (top) and template matching (bottom).
As an example, assume that a graph ABCDEFG, shown on
the left, could be constructed from complex candidate inter-
actions annotated by the BioGRID from a single publication.
The arrows indicate bait to prey relationships, with the inter-
action A–D being repeated twice, once with A and once with
D as a bait. Pattern-detection algorithm (top) would recognize
A and D as hubs of potentially spoke-expanded complexes
and thus replace all pairwise interactions on the left with
complexes ABCDEF and ACDEFG. Suppose that the complex
ACDEF was reported from the same publication by a different
database. Then, template matching procedure (bottom) would
generate the complex ACDEF (with all other annotation, such
as experimental detection method, retained from the original
interactions) and remove all original interactions except D–G
and A–B. After performing both procedures, ppiTrim consoli-
dates the results so that the overall result would be replacing
the original interactions by complexes ACDEF, ABCDEF and
ACDEFG with edge type codes ‘R’, ‘A’ and ‘A’, respectively.
The interactions A–B and D–G would not be retained since
they are contained within the deflated complexes ABCDEF
and ACDEFG.
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a single experiment, into one consolidated interaction

record. Every source publication contains descriptions of

one or more experiments that result in reported inter-

actions. Unfortunately, distinct experiments within each

publication are not annotated in all source databases,

with the exception of the interactions from IntAct and

MINT that appear to distinguish experiments using a num-

bered suffix to the author’s name in the ‘Author’ field. It is

therefore necessary to rely on the experimental detection

method terms to determine whether source records from

different databases, with the same interactants and source

publication, represent the evidence for the same inter-

action. Ideally, all such records with the same detection

method can be collapsed into one consolidated interaction,

although this may undercount multiple evidences from the

same publication obtained by distinct experiments.

However, different databases have different annotation

policies and do not necessarily use the same PSI-MI term

to annotate a given experimental method. To resolve de-

tection method term disagreements, we use the PSI-MI

ontology structure (Figure. 2). Two compatible terms as-

signed by different source databases are considered to rep-

resent the same experimental method within a publication.

These annotated records are thus consolidated.

The Phase III algorithm proceeds as follows. All source

interactions and complexes (original as well as deflated in

Phase II) are divided into ‘clusters’. Interactions that share

the same interactants and the source publication are placed

into the same cluster. The order of interactants is significant

only for biochemical reactions, which are treated as dir-

ected interactions (only when direction can be ascertained).

Each cluster is processed independently and divided into

subclusters based on compatibility of the PSI-MI terms for

interaction detection method. Interactions from each sub-

cluster are collected into a single consolidated interaction,

which is output to the final data set. The consolidated

record preserves references to all original interactions.

Each consolidated interaction is assigned a single PSI-MI

term for interaction-detection method that most

specifically describes the entire collection of annotation

terms within the subcluster. For easier reference, each con-

solidated interaction is given a unique ppiTrim ID, which is

similar to RIGID from iRefIndex. This is a SHA1 hash of a

Figure 2. The picture shows a part of the PSI-MI ontology
graph for interaction-detection method associated with a
hypothetical cluster of source interactions involving the same
interactants from the same publication. The terms colored
blue are associated with the source interactions within the
cluster, while those marked yellow and green are present in
the ontology but do not label any source interaction from the
cluster. The entire cluster as shown is consistent, with the term
MI:0401 as the maximal element. Its finest consistent term is
MI:0004 (colored green) since the cluster members smaller
than it are not comparable between themselves. Removing
the source interactions labeled by MI:0401 from the cluster
would result in three distinct subclusters. If two subclusters
contain no interaction from the same source database, they
would be reported as conflicts.

Table 1. Edge type codes used by ppiTrim

Code Description

X Undirected binary interaction (physical binding)

D Directed binary interaction (biochemical reaction)

B Biochemical reaction without indication of directionality

C Original complex (from iRefIndex)

G Spoke-expanded complex; deflated by pattern matching from BioGRID’s ’Co-purification’ and ’Co-fractionation’ categories

(reliable)

R Potential spoke-expanded complex; deflated by template matching of a ‘C’-complex

A Potential spoke-expanded complex (BioGRID only); deflated by pattern detection

N Potential spoke-expanded complex; deflated by template matching of a ‘G’- or ‘A’-complex

.............................................................................................................................................................................................................................................................................................
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dot-separated concatenation of its interactants (Gene IDs),

publication(s), detection method, interaction type

and edge type. Every complex uses its ppiTrim ID as its

primary ID.

Reconciling annotation. The DAG structure of an

ontology naturally induces a partial order between the

terms: for two terms u and v, we say that u refines v (u is

smaller v, u precedes v) if there exists a directed path in the

DAG from u to v. Two PSI-MI terms can be considered com-

patible if they are comparable, that is, one refines the

other. Every non-empty collection of terms U can be

uniquely split into disjoint sets Ui, such that every Ui has a

single maximal element (an element comparable with and

not smaller than any other member) and contains all mem-

bers of U comparable with its maximal element. Every sub-

collection Ui is then consistent because there exists at least

one term within it that can describe all its members, while

any two members from different subcollections are incom-

parable. The ‘finest consistent term’ of a subcollection Ui is

the smallest member of Ui that is comparable with all its

members (it can also be defined as the smallest member of

the intersection of the transitive closures of all the mem-

bers of Ui.). If Ui is a total order, where all members are

comparable pairwise, the finest consistent term is the min-

imal term. On the other hand, the minimal term need not

exist (Figure 2), so that the finest consistent term is higher

in the hierarchy and represents the most specific annota-

tion that can be assigned to Ui as a whole.

To produce consolidated interactions from a single clus-

ter, each of its members (interactions) is identified with its

PSI-MI term for information-detection method. For every

cluster member, the set of all other members with compat-

ible annotations (‘compatible set’) is computed. As a special

case, the following detection method tags are treated as

smaller than any other: ‘unspecified method’ (MI:0686),

‘in vivo’ and ‘in vitro’ (The latter two are from HPRD

only). In this way, non-specific annotations are considered

as compatible with all other, more specific evidences.

Compatible sets are further grouped according to their

maximal elements. Within each group, the union of the

compatible sets produces a subcluster. The finest consistent

term for each subcluster is found by considering all PSI-MI

terms on the paths from the subcluster members to its max-

imum — the search is not restricted to those terms that are

within the subcluster (Figure 2).

Conflicts. We consider two subclusters of the same cluster

to be in an unresolvable conflict if there is no source data-

base shared between them. This definition takes into ac-

count that a source database may report an interaction

several times for the same publication, using the same or

different interaction-detection method. If two databases

annotate the same interaction using incompatible terms,

this is most likely due to an error or specific disagreement

about the appropriate label, rather than that each data-

base is reporting a different experiment from the same

publication. Unresolvably conflicting interaction records,

after consolidation, point to each other using ppiTrim ID

in the ‘Confidence’ field.

ppiTrim also collects statistics about resolvable conflicts

in its temporary output files. A resolvable conflict is the case

where source interactions within a single subcluster have

compatible but different experimental detection method

labels.

Evaluation of the script

To test ppiTrim, we applied it to the yeast (Saccharomyces

cerevisiae), human (Homo sapiens) and fruitfly (Drosophila

melanogaster) data sets from iRefIndex release 8.0-beta,

dated 19 January 2011. The script was run on 13 June

2011 and used the then-current versions of Uniprot and

NCBI Gene databases. We restricted protein interactors to

allowed NCBI Taxonomy IDs: 4932 and 559 292 for yeast,

9606 for human and 7227 for fruitfly data sets. When pro-

cessing the yeast data set, we accounted for two special

cases. First, we specifically removed the genetic interactions

reported by Tong et al. (29) because they were not labeled

as genetic for all source databases. Secondly, we excluded

the data set by Collins et al. (30) from Phase II and retained

all its interactions as binary undirected. This data set is pre-

sent only in the BioGRID and can be considered computa-

tionally derived and partially redundant. Collins et al. (30)

reprocessed the data from Gavin et al. (31) and Krogan

et al. (32) to obtain an improved set of pairwise inter-

actions. Collins et al. (30) used hierarchical clustering to re-

cover protein complexes, but these are not present in the

BioGRID. In spite of its redundancy, we decided not to en-

tirely remove this data set but also not to attempt to de-

flate its potential complexes because bait/prey assignments

may not be meaningful in this case.

Results and discussion

The results of applying ppiTrim to process iRefIndex 8.0

are shown in Tables 2–5. The statistics of ID mapping

(Tables 2 and 3) show that a considerable number of inter-

actants could be additionally mapped to Gene ID in human

and fruitfly data sets, thus enabling us to take into consid-

eration a few thousand of raw interactions that would

otherwise be filtered. This is also evident in terms of

iRefIndex RIGIDs (Supplementary Table 4), which associate

all raw interactions with interactants with same sequences

to a single record. For yeast, the number of interactions

gained by mapping to Gene IDs is small because most of

mapped IDs were not valid.

We chose to standardize proteins using NCBI Gene iden-

tifiers rather than the iRefIndex-provided canonical IDs
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(CROGIDs) for several reasons. NCBI Gene records not only

associate each gene with a set of reference sequences, but

also include a wealth of additional data (e.g. list of syno-

nyms) and links to other databases such as Gene Ontology

(33) that are important when using the interaction data set

in practice. In addition, Gene records are regularly updated

and their status evaluated based on new evidence. Thus, a

gene record may be split into several new records or

marked as obsolete if it corresponds to an open reading

frame (ORF) that is known not to produce a protein. For

network analysis applications, it is desirable that only the

proteins actually expressed in the cell are represented in

the network and hence the gene status provided by NCBI

Gene is a valuable filtering criterion. Our results in yeast

(Table 3) support this premise: most CROGIDs without

Gene ID are associated with sequences derived from ORFs

that were subsequently declassified as genes. However,

CROGIDs do have one advantage over NCBI Gene IDs in

that they are protein-based and hence identical protein

products of several genes (like histones) are clustered

together.

There are several reasons that our algorithm was able to

introduce many additional associations of CROGIDs to Gene

IDs. First, iRefIndex only provides mappings to Gene IDs for

interactors that have a sequence that exactly matches a

sequence in an NCBI RefSeq record (Ian Donaldson, private

communication). By a case-by-case examination of some or-

phaned yeast sequences that could be mapped to Gene ID,

Table 3. Mapping CROGIDs from iRefIndex into Gene IDs

Species Initial CROGIDs Aditional mapped Final

Total Mapped Orphans Total Valid CROGIDs Gene IDs

Saccharomyces cerevisiae 6159 5552 607 433 47 5599 5618

Homo sapiens 14 047 11 432 2615 1261 1261 12693 11786

Drosophila melanogaster 9379 7810 1569 566 566 8346 7846

Statistics of mapping CROGIDs into Gene IDs. Columns 2–4 show the total number of CROGIDs considered, the number that could be

directly mapped to GeneIDs and the number of ‘orphans’ that are not associated with a Gene ID in the iRefIndex file. Columns 5 and 6

show the number of CROGIDs additionally mapped to GeneIDs, while the last two columns show the final number of CROGIDs accepted

and the corresponding number of Gene IDs. It is possible for a CROGID to map to multiple Gene IDs (if multiple genes encode the same

protein sequence) as well as for multiple CROGIDs to map to a single GeneID (if our additional mapping links them to the same gene).

Table 4. Deflating spoke-expanded complexes

Species Publications Pairs Complexes

Initial Remaining C G R A N

Saccharomyces cerevisiae 3924 118 819 28 643 7729 323 5384 3190 1311

Homo sapiens 10 317 56 111 35 650 8382 181 1143 1443 304

Drosophila melanogaster 398 1722 1053 220 16 82 33 3

Shown are the numbers of complexes obtained by deflating binary interactions with affinity chromatography (or related) as experimen-

tal method. Types of complexes are indicated by one-letter codes described in Table 1. The counts of pairs shown include those from

publications with fewer than three interactions (per database), which could never be deflated into complexes.

Table 2. Processing source interactions

Species Initial Removed Without Gene ID Retained With mapped Gene ID

Saccharomyces cerevisiae 400 449 173 815 3608 223 026 880

Homo sapiens 382 094 148 724 2738 230 632 161 87

Drosophila melanogaster 154 770 324 77 9476 112 817 3427

Statistics of initial processing of raw interactions from iRefIndex. Shown are the initial number, total number removed due to filtering

criteria, number removed due to missing Gene ID, total number of retained and the number retained containing at least one interactant

with mapped Gene ID.
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we found that they were orphans because they differed in

one or two amino acids from that protein’s reference rep-

resentative in RefSeq but were not clustered with that rep-

resentative’s Gene record. Additional mappings can be

found through database cross-reference from a Uniprot

record pointing to a Gene ID. The iRefIndex canonicaliza-

tion procedure captures some of these associations in the

mappings.txt file but they are not available in the main

iRefIndex MITAB files. We have found (Supplementary

Table 5) that some CROGIDs (mostly in human) can be add-

itionally mapped by using this information in the

mappings.txt file. Notably, ppiTrim accesses a more

recent version of Uniprot then iRefIndex and is thus able

to find more mappings by accessing Uniprot cross-

references directly. Finally, there is a substantial number

of Uniprot records that do not have a cross-reference to

NCBI Gene but can be linked to a Gene record through

their canonical gene names. This last approach can be sug-

gested as an improvement for iRefIndex canonicalization

processing.

Around 10% of CROGIDs could not be mapped to Gene

IDs even after processing with ppiTrim algorithms. A few

interactors (Supplementary Table 5) have only PDB acces-

sions as their primary IDs since their interactions were

derived from crystal structures. In such cases, often only

partial sequences of participating proteins are available.

These partial sequences cannot be fully matched to any

Uniprot or RefSeq record and hence are assigned a separate

ID. Hence, an improvement for our procedure, that would

account for this case as well as for those unmapped pro-

teins that differ from canonical sequences only by few

amino acids, would be to use direct sequence comparison

to find the closest valid reference sequence. This task may

not be technically difficult (a similar procedure was applied

by Alves et al. (34) to construct protein databases for mass

spectrometry data analysis) but is beyond the scope of

ppiTrim, which is intended as a relatively short standalone

script. In our opinion, such additional mappings would best

be performed at the level of reference sequence databases

such as Uniprot or RefSeq, which contain the curator ex-

pertise to resolve ambiguous cases.

Protein complexes obtained through chromatography

techniques provide information complementary to direct

binary interactions. While it is often difficult to determine

the exact layout of within-complex pairwise interactions,

an identification of an association of several proteins

using mass spectroscopy is an evidence for in vivo existence

of that association. Unfortunately, in spite of its great

importance, the currently available information within

iRefIndex is deficient because of different treatments of

complexes by different source databases. Our results

(Table 4) show that the apparently inflated complexity of

interaction data sets can be substantially reduced by at-

tempting to collapse spoke-expanded complexes. For

yeast, this results in almost three-quarters reduction of

the number of candidate interactions. The majority of

new complexes falls into ‘G’ and ‘R’ categories, which can

be considered most reliable. For the human data set, reduc-

tion is small as a proportion although in absolute terms the

number of new complexes is over 3000. The fruitfly data set

did not contain many candidate interactions or complexes

and hence not many new complexes were obtained.

In general, it is difficult to assess whether newly gener-

ated complexes from ‘A’ and ‘N’ categories are biologically

justified, that is, whether they represent a functional entity.

If a bait and its preys genuinely originate from a single

experiment, they definitely form a physical association

that may be a part of or an entire functional complex.

Since ppiTrim preserves the experimental role labels and

the original interaction identifiers, little information is

lost by deflating such associations into a single record. On

the other hand, for some publications, especially those

involving experiments with ubiquitin-like proteins as bait,

each bait–prey association may represent a separate experi-

ment and it does not substantiate that different prey pro-

teins may be co-present in the cell. For example, BioGRID

Table 5. Final consolidated data sets

Species Publications Input pairs Consolidated Conflicts

Biochem Other Complexes Directed Undirected Resolvable Unresolvable

Saccharomyces cerevisiae 6303 5780 119 329 10 778 5525 63 648 19 344 454

Homo sapiens 22 660 2446 199 094 6483 2042 85 480 26 478 1333

Drosophila melanogaster 564 51 111 862 227 33 27 981 19 430 11

For each species, shown are the numbers of input pairs (input complexes are those from Table 4), classified as either biochemical

reactions (potentially directed) or others; also shown are the final numbers of consolidated interactions (classified as complexes, directed

or undirected). The ‘other’ column accounts only for those interactions that were not deflated into complexes in Phase II. The last two

columns show the total numbers of resolvable and unresolvable conflicts between consolidated interactions. An unresolvable conflict is

an instance where two consolidated interactions, originated from the same publication, are reported using incompatible experimental

detection method labels by different databases. A resolvable conflict is the case where source interactions within a single consolidated

interaction have different (but compatible) experimental detection method labels.
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provides 158 physical associations from the paper by

Hannich et al. (35), each involving the yeast Smt3p

(SUMO, a ubiquitin-like) protein as a bait. In this case, it is

not true that all the involved preys together form a large

complex with the bait. ppiTrim avoids this particular case by

not deflating potentially too large complexes (the max-

imum deflated complex size is tunable by the user with

the default of 120 proteins), but one can assume that

some of deflated ‘complexes’ do not exist in vivo.

To more closely investigate the fidelity of generated

complexes, we randomly sampled 25 ‘A’ and ‘N’ deflated

yeast complexes from the final output of ppiTrim and

examined their original publications. Out of these 25 com-

plexes, 15 originated from high-throughput publications

[mostly Gavin et al. (31) and Krogan et al. (32) —

Supplementary Table 6], while 10 came from small experi-

ments (Supplementary Table 7). In all high-throughput

cases, the deflated complex represents a true experimental

association. In the cases when authors present their own

derived complexes, which in many cases can be found sep-

arately under the ‘C’ category, our deflated complexes form

parts of larger derived complexes. Indeed, such derived

complexes are obtained by assembling the results of several

bait–prey experiments, each of which forms a single

deflated complex. The results are more varied for

low-throughput publications. In most cases, deflated com-

plexes clearly correspond to functional complexes, al-

though it is sometimes difficult to fully relate author’s

conclusions with their reported results. In two cases, the

inferred association is incorrect due to curation errors in

the original database. We have also found a single case

where the publication authors directly state that proteins

in a deflated complex do not form a stable complex.

While our sample is extremely small, it does indicate sev-

eral issues arising from deflation of bait–prey relationships.

In most cases, deflated complexes form parts of what are

believed to be functional complexes. It appears that cur-

ation errors or ambiguities may be a more significant

source of wrongly inferred associations than our main as-

sumption that a bait with several preys in a single publica-

tion represents a single unit. Overall, we feel that the

benefits from reduction of interactome complexity out-

weigh the disadvantages from potentially over deflating

interactions. The best way to solve the problem of dif-

ferent representations of protein complexes would be

at the level of source databases (BioGRID in particular), by

re-examining the original publications. Our complexes from

the ‘R’ category, where deflated complexes fully agree with

an annotated complex from a different database, could

serve as a guide in this case.

Overall, our processing significantly reduced the number

of interactions within each of the three data sets con-

sidered (Table 5). This indicates a significant redundancy,

particularly for protein complexes, original and deflated

(compare Table 4 with Table 5), and for binary interactions.

The directed interactions (biochemical reactions) are rela-

tively rarer and largely non-redundant at this stage. Given

their importance in elucidating biological function, the dir-

ected interactions are expected to be discovered more fully

with time. However, one should note that PSI-MI format

can only represent a static relationship among a set of phys-

ical entities involved in the same event, but cannot actually

represent two sides of a reaction e.g. Aþ B! C þ D.

Certain pairs of PSI-MI biological role terms can be com-

bined to represent interaction direction e.g. enzyme and

enzyme target, but these are weak compared to the rich

ways that pathway databases like Reactome (36) represent

events.

To demonstrate the utility of our conflict resolution

method, we present the counts for resolvable and unresolv-

able conflicts in Table 5. Resolvable conflicts significantly

outnumber the unresolvable ones. Examining the most

common examples of resolvable conflicts (Supplementary

Table 8), one can see that a majority of them indeed rep-

resent the same experiment. Possible exceptions are human

interactions annotated by HPRD, which have ambiguous

detection method labels. To address this and similar prob-

lems, ppiTrim provides the maxsources confidence score

(Supplementary Table 1), which is an estimate of the max-

imal number of independent experiments contributing to a

consolidated interaction. An interesting example of a re-

solvable conflict in Supplementary Table 8 is the 444 in-

stances of a consolidated interaction containing source

interactions with detection method labels MI:0004 (affinity

chromatography technology), MI:0007 (anti-tag coimmuno-

precipitation), and MI:0676 (tandem affinity purification).

This case is very similar to the one described in Figure 2: the

last two terms are incompatible but the first resolves the

conflict as the finest consistent term.

Upon closer examination of the few unresolvable con-

flicts (Table 6), it can be seen that most common conflicts

arise as instances of few specific labeling disagreements

between databases. In many cases, such disagreements

arise from using different sub-terms of affinity chromatog-

raphy (Figure 2) and can be resolved by assigning a more

general term consistent with both conflicting terms. In

many other cases, the conflicts are due to BioGRID intern-

ally using a more restricted detection method vocabulary

than the IMEx databases (DIP, IntAct and MINT). However,

in some rare cases, an unresolvable conflict arises when

different databases annotate different experiments from

the same publication. For example, each of DIP, BioGRID

and IntAct report several raw interactions from the paper

by Blaiseau and Thomas (37) (pubmed:9799240), where

yeast Met4p protein interacts with each of Met28p,

Met31p and Met32p in binary interactions. The paper re-

ports several experiments using different techniques

including northern blotting, yeast two-hybrid and
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electrophoretic mobility shift assays. For the interaction be-

tween Met4p and Met28p, BioGRID and IntAct report only

MI:0018 (yeast two-hybrid) method, while DIP reports only

MI:0404 (comigration in non-denaturing gel electrophor-

esis), resulting in unresolvable conflict. Hence, in this case,

each database on its own provides incomplete evidence for

this interaction.

The ppiTrim algorithms work best if accurate and fully

populated fields for interaction detection method, publica-

tion and interaction type are available in its input data set.

This requirement is mostly fulfilled. Nevertheless, we have

noticed two minor inconsistencies. The first, which will be

fixed in a subsequent release of iRefIndex (Ian Donaldson,

private communication), involves the PSI-MI labels for inter-

action detection method for CORUM interactions and com-

plexes. These are missing from iRefIndex although they are

present in the original CORUM source files. The second

issue concerns missing or invalid Pubmed IDs for certain

interactions. We found that a number of interactions

with missing Pubmed IDs come from MINT. Upon inspection

of the original MINT files, we discovered that in many cases

MINT supplies a Digital Object Identifier (DOI) for a publi-

cation as its identifier instead of a Pubmed ID (although the

corresponding Pubmed ID can be obtained from the MINT

web interface). To ensure consistency with other source

databases within iRefIndex, it would be desirable to have

the Pubmed IDs available for these interactions as well.

In this article, we have identified the tasks needed for

using combined interaction data sets provided by iRefIndex

as a basis for construction of reference networks and de-

veloped a script to process them into consistent consoli-

dated data sets. We see ppiTrim as answering a

temporary need for a consolidated database and hope

that most of the issues that required processing will be

eventually fixed in upstream databases and distributed

through IMEx consortium. At this stage we have not

addressed the issue of quality of interactions although

such information is available in some databases for some

publications (23). Utilizing the quality information in con-

solidating data sets demands a universal data-quality meas-

ure that is not yet existent.

Supplementary Data

Supplementary data are available at Database Online.
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